CONTINUATION FOR NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS DISCRETIZED BY THE MULTIQUADRIC METHOD
نویسندگان
چکیده
منابع مشابه
Continuation for nonlinear Elliptic Partial differential equations discretized by the multiquadric Method
The Multiquadric Radial Basis Function (MQ) Method is a meshless collocation method with global basis functions. It is known to have exponentional convergence for interpolation problems. We descretize nonlinear elliptic PDEs by the MQ method. This results in modest-size systems of nonlinear algebraic equations which can be efficiently continued by standard continuation software such as AUTO and...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Application of the Multiquadric Method for Numerical Solution of Elliptic Partial Differential Equations
We have used the multiquadric (MQ) approximation scheme for the solution of elliptic partial differential equations with Dirichlet and/or Neumann boundary conditions. The scheme has the advantage of using the data points in arbitrary locations with an arbitrary ordering. Two-dimensional Laplace, Poisson, and biharmonic equations describing the various physical processes have been taken as the t...
متن کاملOn the Exact Solution for Nonlinear Partial Differential Equations
In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...
متن کاملA numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method
In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Bifurcation and Chaos
سال: 2000
ISSN: 0218-1274,1793-6551
DOI: 10.1142/s0218127400000323